

Welcome to Flask-EasyAPI’s documentation!

Contents:

	Flask-EasyAPI
	Features

	Installation
	Stable release

	From sources

	Usage

	flask_easyapi
	flask_easyapi package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	Special Thanks

	History
	0.1.1 (2020-08-28)

	0.1.0 (2020-08-28)

	0.0.6 (2020-08-21)

	0.0.5 (2020-08-20)

	0.0.4 (2020-08-19)

	0.0.3 (2020-08-19)

	0.0.2 (2020-08-19)

	0.0.1 (2020-08-19)

	0.0.0 (2020-08-19)

Indices and tables

	Index

	Module Index

	Search Page

Flask-EasyAPI

[image: Package version`]
 [https://pypi.python.org/pypi/flask-easyapi][image: Supported python versions]
 [https://pypi.python.org/pypi/flask-easyapi][image: Bulid status]
 [https://travis-ci.com/hXtreme/flask-easyapi][image: LICENSE]
 [https://github.com/hXtreme/flask-easyapi/blob/master/LICENSE][image: Documentation Status]
 [https://flask-easyapi.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/hXtreme/flask-easyapi/][image: Code Style - Black]
 [https://github.com/psf/black]Rest API on Flask made a little too easy.

	Documentation: https://flask-easyapi.readthedocs.io.

Features

	One to one mapping from functions to api endpoints via decorators

Planned

	Use type annotations to automatically add type-checks to parameters recieved in the requests to the api.

	Return HTTP error codes and error messages by raising exceptions.

Installation

Stable release

To install Flask-EasyAPI, run this command in your terminal:

$ pip install flask_easyapi

This is the preferred method to install Flask-EasyAPI, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Flask-EasyAPI can be downloaded from the Github repo [https://github.com/hXtreme/flask_easyapi].

You can either clone the public repository:

$ git clone git://github.com/hXtreme/flask_easyapi

Or download the tarball [https://github.com/hXtreme/flask_easyapi/tarball/master]:

$ curl -OJL https://github.com/hXtreme/flask_easyapi/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Flask-EasyAPI in a project:

import flask_easyapi

flask_easyapi

	flask_easyapi package
	Submodules

	flask_easyapi.flask_easyapi module

	Module contents
	Flask-EasyAPI

flask_easyapi package

Submodules

flask_easyapi.flask_easyapi module

	
class flask_easyapi.flask_easyapi.EasyAPI(name: str, import_name: str, *args, **kwargs)[source]

	Bases: flask.blueprints.Blueprint

EasyAPI is an object that makes defining a collection of related rest-api easier.

Represents a collection of related rest-api routes that
can later be registered on a real application.

	Parameters

	
	name – The name of the blueprint. Will be prepended to each
endpoint name.

	import_name – The name of the blueprint package, usually
__name__. This helps locate the root_path for the
blueprint.

Keyword arguments passed to Blueprint

See flask Blueprint api [https://flask.palletsprojects.com/en/1.1.x/api/#blueprint-objects]
for up-to-date information. The following is an extract of docs under
BSD-3-Clause License [https://github.com/pallets/flask/blob/master/LICENSE.rst]:

	Parameters

	
	static_folder – A folder with static files that should be
served by the blueprint’s static route. The path is relative to
the blueprint’s root path. Blueprint static files are disabled
by default.

	static_url_path – The url to serve static files from.
Defaults to static_folder. If the blueprint does not have
a url_prefix, the app’s static route will take precedence,
and the blueprint’s static files won’t be accessible.

	template_folder – A folder with templates that should be added
to the app’s template search path. The path is relative to the
blueprint’s root path. Blueprint templates are disabled by
default. Blueprint templates have a lower precedence than those
in the app’s templates folder.

	url_prefix – A path to prepend to all of the blueprint’s URLs,
to make them distinct from the rest of the app’s routes.

	subdomain – A subdomain that blueprint routes will match on by
default.

	url_defaults – A dict of default values that blueprint routes
will receive by default.

	root_path – By default, the blueprint will automatically this
based on import_name. In certain situations this automatic
detection can fail, so the path can be specified manually
instead.

	
route(rule: str, **options)[source]

	A decorator that is used to register an api endpoint
and its handler. The decorated function will automatically
receive the url parameters as kwargs.

Note

As of v0.1.0 unlike Blueprint, route() and
add_url_rule() behaves differently for EasyAPI,
this difference is expected to disappear in later releases.

	Parameters

	rule – The URL rule as string. See flask route registrations api [https://flask.palletsprojects.com/en/1.1.x/api/#url-route-registrations]

Keyword arguments passed to Blueprint

See flask route api [https://flask.palletsprojects.com/en/1.1.x/api/#flask.Flask.route] for up-to-date information.
The following is an extract of docs under BSD-3-Clause License [https://github.com/pallets/flask/blob/master/LICENSE.rst]:

	Parameters

	
	endpoint – the endpoint for the registered URL rule. Flask
itself assumes the name of the view function as
endpoint

	options – the options to be forwarded to the underlying
Rule object. A change
to Werkzeug is handling of method options. methods
is a list of methods this rule should be limited
to (GET, POST etc.). By default a rule
just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly
added and handled by the standard request handling.

Module contents

Flask-EasyAPI

EasyAPI is a flask extension that aims to make writing rest-api with flask very easy.

COPYRIGHT: Harsh Parekh [https://github.com/hXtreme]
LICENSE: MIT [https://github.com/hXtreme/flask-easyapi/blob/master/LICENSE]

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/hXtreme/flask_easyapi/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

	Expected and Actual behaviour of your code.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Other Issues

Look through Github issuses for open issues. Things tagged “help wanted” are open to anyone; for others confirm with project team to pick up the issue.

Write Documentation

Flask-EasyAPI could always use more documentation, whether as part of the
official Flask-EasyAPI docs, in docstrings, as additional examples, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/hXtreme/flask_easyapi/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up flask_easyapi for local development.

	Fork the flask_easyapi repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/flask_easyapi.git

	Install your local copy into a virtualenv. This is how you set up your fork for local development:

$ cd flask_easyapi/
$ virtualenv env && . ./env/bin/activate
$ pip installl -r requirements_dev.txt
$ pip install --editable .

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, make sure to follows black’s style guide
and check that your changes pass flake8,
the tests, including testing other Python versions with tox:

$ black flask_easyapi tests
$ flake8 flask_easyapi tests
$ pytest
$ tox

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/hXtreme/flask_easyapi/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_flask_easyapi

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Github workflow will then deploy to PyPI if tests pass.

Credits

Development Lead

	hXtreme [https://github.com/hXtreme] <harsh_parekh@outlook.com> : Project manager.

Contributors

None yet. Why not be the first?

Special Thanks

	audreyr [https://github.com/audreyr] : For the cookiecutter template [https://github.com/audreyr/cookiecutter-pypackage].

History

0.1.1 (2020-08-28)

	Update README to reflect implemented feature.

0.1.0 (2020-08-28)

	Add EasyAPI class that functions as a Blueprint
for a set of api call routes.

	Implement EasyAPI.route(.) decorator.

	Add a example/test Flask hello world greeting app.

	Add tests for EasyAPI using the greet app.

	Add and update documentation.

	Refactoring and linting changes.

	Fix typos.

0.0.6 (2020-08-21)

	Fix project url in setup.py

0.0.5 (2020-08-20)

	Improve CD process.

0.0.4 (2020-08-19)

	Improve CD process.

0.0.3 (2020-08-19)

	Various changes to CI configuration.

	Update dependencies.

	Edit README.rst to add badges and alt-text.

0.0.2 (2020-08-19)

	Fix badges in readme

	Add pyup configuration

0.0.1 (2020-08-19)

	Fix minor issues and typos to make tests pass.

0.0.0 (2020-08-19)

	First release on PyPI. [Falied]

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flask_easyapi	

 	
 	
 flask_easyapi.flask_easyapi	

Index

 E
 | F
 | R

E

 	
 	EasyAPI (class in flask_easyapi.flask_easyapi)

F

 	
 	flask_easyapi (module)

 	
 	flask_easyapi.flask_easyapi (module)

R

 	
 	route() (flask_easyapi.flask_easyapi.EasyAPI method)

 All modules for which code is available

	flask_easyapi.flask_easyapi

 Source code for flask_easyapi.flask_easyapi

from functools import partial
from functools import wraps
from typing import Callable

from flask import Blueprint
from flask import request

[docs]class EasyAPI(Blueprint):
 """
 EasyAPI is an object that makes defining a collection of related rest-api easier.

 Represents a collection of related rest-api routes that
 can later be registered on a real application.

 :param name: The name of the blueprint. Will be prepended to each
 endpoint name.
 :param import_name: The name of the blueprint package, usually
 ``__name__``. This helps locate the ``root_path`` for the
 blueprint.

 Keyword arguments passed to Blueprint

 See `flask Blueprint api
 <https://flask.palletsprojects.com/en/1.1.x/api/#blueprint-objects>`_
 for up-to-date information. The following is an extract of docs under
 `BSD-3-Clause License
 <https://github.com/pallets/flask/blob/master/LICENSE.rst>`_:

 :param static_folder: A folder with static files that should be
 served by the blueprint's static route. The path is relative to
 the blueprint's root path. Blueprint static files are disabled
 by default.
 :param static_url_path: The url to serve static files from.
 Defaults to ``static_folder``. If the blueprint does not have
 a ``url_prefix``, the app's static route will take precedence,
 and the blueprint's static files won't be accessible.
 :param template_folder: A folder with templates that should be added
 to the app's template search path. The path is relative to the
 blueprint's root path. Blueprint templates are disabled by
 default. Blueprint templates have a lower precedence than those
 in the app's templates folder.
 :param url_prefix: A path to prepend to all of the blueprint's URLs,
 to make them distinct from the rest of the app's routes.
 :param subdomain: A subdomain that blueprint routes will match on by
 default.
 :param url_defaults: A dict of default values that blueprint routes
 will receive by default.
 :param root_path: By default, the blueprint will automatically this
 based on ``import_name``. In certain situations this automatic
 detection can fail, so the path can be specified manually
 instead.
 """

 def __init__(self, name: str, import_name: str, *args: list, **kwargs: dict):
 bp_kwargs = {
 "static_folder",
 "static_url_path",
 "template_folder",
 "url_prefix",
 "subdomain",
 "url_defaults",
 "root_path",
 "cli_group",
 }
 Blueprint.__init__(
 self,
 name,
 import_name,
 **{kw: kwargs[kw] for kw in kwargs.keys() & bp_kwargs}
)
 self.args = args
 self.kwargs = {kw: kwargs[kw] for kw in kwargs.keys() - bp_kwargs}

[docs] def route(self, rule: str, **options):
 """
 A decorator that is used to register an api endpoint
 and its handler. The decorated function will automatically
 receive the url parameters as kwargs.

 .. note:: As of v0.1.0 unlike Blueprint, :meth:`route` and
 :meth:`add_url_rule` behaves differently for EasyAPI,
 this difference is expected to disappear in later releases.

 :param rule: The URL rule as string. See `flask route registrations api
 <https://flask.palletsprojects.com/en/
 1.1.x/api/#url-route-registrations>`_

 Keyword arguments passed to Blueprint

 See `flask route api <https://flask.palletsprojects.com/en/1.1.x/
 api/#flask.Flask.route>`_ for up-to-date information.
 The following is an extract of docs under `BSD-3-Clause License
 <https://github.com/pallets/flask/blob/master/LICENSE.rst>`_:

 :param endpoint: the endpoint for the registered URL rule. Flask
 itself assumes the name of the view function as
 endpoint
 :param options: the options to be forwarded to the underlying
 :class:`~werkzeug.routing.Rule` object. A change
 to Werkzeug is handling of method options. methods
 is a list of methods this rule should be limited
 to (``GET``, ``POST`` etc.). By default a rule
 just listens for ``GET`` (and implicitly ``HEAD``).
 Starting with Flask 0.6, ``OPTIONS`` is implicitly
 added and handled by the standard request handling.
 """

 def coalesce(multi_dict):
 return {
 key: values[0] if len(values) == 1 else values
 for key, values in multi_dict.lists()
 }

 route = partial(Blueprint.route, self)

 def api_decorator(func: Callable):
 @route(rule, **options)
 @wraps(func)
 def wrapper(*args, **kwargs):
 request_args = coalesce(request.args)
 endpoint_kwargs = {**request_args, **kwargs}
 return func(*args, **endpoint_kwargs)

 return wrapper

 return api_decorator

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Flask-EasyAPI’s documentation!

 		
 Flask-EasyAPI

 		
 Features

 		
 Planned

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 flask_easyapi

 		
 flask_easyapi package

 		
 Submodules

 		
 flask_easyapi.flask_easyapi module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Special Thanks

 		
 History

 		
 0.1.1 (2020-08-28)

 		
 0.1.0 (2020-08-28)

 		
 0.0.6 (2020-08-21)

 		
 0.0.5 (2020-08-20)

 		
 0.0.4 (2020-08-19)

 		
 0.0.3 (2020-08-19)

 		
 0.0.2 (2020-08-19)

 		
 0.0.1 (2020-08-19)

 		
 0.0.0 (2020-08-19)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

